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Preface

This is a book on quantitative methods in health services research, health economics, and
health policy evaluation – more generally referred to as “program evaluation.” Health ser-
vices research is a multidisciplinary field that examines the use, costs, quality, outcomes,
and other aspects of health care including the organization of healthcare markets. Evaluat-
ing the impact of health policy is central to the field.

Quantitative analyses in health services research apply methods and language developed
in econometrics and statistics or biostatistics. In most applications, the goal is to understand
the causal impact of policy changes or “treatments,” broadly defined, on a set of outcomes.
In most circumstances, however, randomized trials are either not feasible or prohibitively
expensive, and we must establish causality using observational data; that is, data that were
not collected as part of an experiment. The main distinction between experiments and
observational studies is that in observational studies treatment assignment is not under the
control of the investigator. The consequence is that other factors besides treatment are not
held constant so it is more difficult to establish causality.

Most readers have already learned that correlation or association does not imply causa-
tion. The goal of causal inference is to understand under which conditions correlation –or
any other measure of association– does imply a causal effect. Thus, this book is about the
design of observational studies and the estimation of statistical models to answer causal re-
search questions. Or said another way, under which circumstances an approach can identify
causal effects. However, we also cover the necessary background to understand advanced
methods. The background material is focused on understanding the mechanics and prop-
erties of parametric and nonparametric statistical models. These models are useful as de-
scriptive and predictive tools, but our ultimate goal is to use them to answer causal research
questions.

One feature of our book is that we separate the design of an observational study from
the estimation of statistical models. The separation of design and estimation is one of the
most valuable aspects of the potential outcomes framework since causal effects are defined
independently of an estimation method. This approach is part of the “new” causal inference
field in statistics, although causal inference has always been central to econometrics. In the
last two to three decades, these separate but related fields have found plenty of common
ground regarding causality. The new part is a clear definition of causal effects and a mathe-
matical notation based on potential outcomes and counterfactuals that continues to expand
and clarify our understanding of established methods and facilitates the development of
new ones.

Our approach is based on the premise that complex concepts are better understood when
first introduced with intuitive examples and graphs, followed by theory, and then practical
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applications using statistical software. Based on our experience teaching graduate-level
classes, we think that students learn best by doing, and “doing” means relating the theory
to application using statistical software. Some concepts are difficult to understand in theory
but are relatively easy to understand when implemented in practice (and vice versa).

We strive to present theory intuitively but formally to show how the theory is applied
and why methods work, which is essential for understanding when specific methods should
be used and what meaning can be derived from the estimators. It is also the basis for un-
derstanding methods that still have not been developed. This is not a “cookbook approach”
book in the sense that we do not focus on rules for specific situations because more often
than not it is not possible to precisely spell out or anticipate the specific situation a rule re-
quires. Instead, we focus on principles, concepts, and assumptions needed – the how, why,
when, and what– which can then be evaluated in specific situations.

We do not shy away from presenting complex concepts and mathematical notation be-
cause they are essential tools to develop intuition on how and why statistical methods work.
Mathematics is a language that makes the job easier, not more difficult. Mathematics al-
lows us to represent ideas and concepts using symbols, and we manipulate these symbols
to discover new ideas and prove propositions that might not be self-evident. Manipulating
complex ideas in our minds without the use of symbols is much more difficult. However,
we always provide the intuition behind the mathematics to help students understand how
the symbols relate to ideas since not all students are comfortable with mathematics. At the
end of the course(s), students should be able to understand the language of mathematics as
it applies to statistical analysis. Our recommendation to students is to think of mathematics
as a language. Success in understanding a concept expressed with mathematics is to make
sure the meaning of the mathematical notation is understood. That is often the first, but
often-ignored, first step.

This book is intended for advanced undergraduates, master’s students, and doctoral stu-
dents in health services research, health economics, public policy, public health, and related
fields. Students in these disciplines come from diverse backgrounds with different levels
of preparation. We assume the same background that is commonly required for admission
to these programs: two semesters of calculus and introductory statistics. A class on linear
regression would be helpful, but not strictly necessary since we review the essential fea-
tures of linear models. We keep linear algebra to a minimum. The goal of the mathematical
appendix is to review the mathematical background needed to understand the rest of the
book. We hope that students go over the introductory material even if it is not assigned
by instructors. Each new concept is based on previous concepts; it is a lack of knowledge
of the basics, and the corresponding notation, that confuses students the most. Previous
knowledge of Stata or R is helpful, although the background chapters also serve as an
introduction to Stata, and the supplementary material reproduces the code using R.

Key features of this book include:

• Semantics Boxes that clarify how terms are used in different disciplines. Because our
field is multidisciplinary, the terms we use can be confusing –sometimes comically
so– because the same terms can have different definitions or because the same concept
is named differently in other fields.
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• Notation Boxes that clarify how mathematical symbols are used in different disciplines
or by different authors. As we said, mathematics is a language, but it is a language
with symbols that are not standard and can be defined in different ways by different
authors. We clarify and present alternative mathematical notation because not under-
standing unfamiliar notation can prevent students and practitioners from grasping the
underlying concepts. A variant of this theme is that sometimes the notation is the re-
sult of giving statistical models an interpretation tied to an underlying theory, so we
also cover different ways of understanding and/or deriving statistical models. We think
students will be better equipped to understand theoretical papers and more advanced
textbooks if they understand the notation.

• Extensive examples using datasets to illustrate real-life applications. One frustrating as-
pect of teaching health services research methods is that we usually cannot use the
same datasets that are common in the field and our own research because Data Use
Agreements (DUA) do not permit the distribution of these data. However, we have
created multiple datasets from publicly available sources and include datasets that
authors have made publicly available to reproduce published papers. Our goal is to
use datasets that reflect how practitioners work in our fields.

• Stata code to reproduce all examples and figures in the book. We use Stata code as a tool
for learning. In some cases, like graphs or long output, not all of the code is in the
book, but it is available in the online supplemental material.

• Stata version control. We prefer Stata as the main statistics packed for the book because it
has the features we need and it has extensive documentation and substantial technical
support. Stata is that it is backwards compatible. Regardless of updates, commands
will always work provided the code includes a Stata version statement. This ensures
that our code will not become obsolete when new versions are released or commands
are updated. Most of our code requires Stata 16 to 18. Each program file begins with
a version statement.

• Online supplemental material. The online supplemental material includes R code to
replicate most of the examples in the book when possible, although some material
is specific to Stata. The online supplemental material also covers additional topics
that we had to leave out from the text because of space constraints. More graphs are
presented in the supplementary material than in the textbook to conserve space.

• End-of-chapter exercises to reinforce key concepts.
• End-of-chapter bibliographical notes with references to books and papers where readers

can find additional or complementary material.
• End-of-chapter ”Key points” to highlight the most important message of each chapter.

This book is also intended to be a tool for faculty who teach quantitative methods and
a reference for practitioners. We wrote it because we could not find a textbook that fit
the needs of our students and our research. In our classes, we ended up assigning book
chapters and papers that use different notation and language, which makes both learning
and teaching more difficult. We had to complement those materials with extensive lecture
notes and “translations” of notation, terms, and subject-matter. Our lecture notes are the
basis for this book.
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Additional supplemental material for instructors include:

• Solutions to most end-of-chapter exercises.
• Most of the sample datasets contain additional variables that are not part of our analy-

ses. Instructors could use these variables to expand problems sets or create examples
focusing on different research questions. In many cases, the variables have missing
values. Most textbooks use small sample datasets with non-missing values, but this
does not reflect the reality of how research is conducted, so we decided to retain miss-
ing values in some of the datasets.

• Lecture notes for most chapters. The lecture notes focus on the most important parts of
each chapter. These notes can be used as a starting point for teaching with our book.
The lecture notes are in Latex (Beamer) and PowerPoint format. In general, we cover
the key parts in class and then assign other section for reading.

• Errata. Despite multiple revisions and editing, the presence of a mistake converges to 1
in probability given the length of our book. We will post a complete list of errors by
chapter as we find them, including updates and clarification of some material.

We wrote the book with a two-semester quantitative methods sequence in mind plus
additional material for review. We cover topics that should be part of the standard toolkit
in health services research and health/public policy doctoral programs as well as applied
econometrics courses in economics programs, although most of our examples are about
health care.

The book is divided into four parts. Parts I and II introduce the major subjects we cover,
including the potential outcomes framework and a review of linear regression. Part III fo-
cuses on estimation and inference of statistical models, including interpretation of model
parameters (causal or not) and discussion of nonparametric models. In other words, Part
III discusses techniques to estimate statistical models and the assumptions and properties
of these models when applied to a sample, without necessarily assuming that findings from
these models have a causal interpretation. On the other hand, Part IV covers the most
important methods to estimate causal effects using observational data: propensity scores
and matching estimators as an alternative and complement to regression adjustment, lon-
gitudinal (panel) data, difference-in-differences, regression discontinuity designs, and in-
strumental variables. Thus, in Part IV, model interpretation implies a causal statement that
requires precise definition.

Two chapters are fundamental for students to master: Chapter 3 on the potential out-
comes framework and Chapter 6 on marginal effects. Chapter 3 is the foundation to under-
stand the definition of causal effects and the identification of causal effects using a sample,
and it presents the potential outcome notation we use in the rest of the book. Chapter 6
on marginal effects is essential for interpreting model parameters and to express model pa-
rameters in different scales and metrics regardless of whether the parameters have a causal
interpretation. We provide an overview of each chapter and their connections in Chapter 1.

We have tried to make the chapters as self-contained (modular) as possible –particularly
in Part IV– so they can be used independently, although this separation is artificial. We refer
to other material in the book when we think students would benefit from reading sections
in other chapters, but we have tried to keep such references to a minimum.
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Each chapter progresses from simple to advanced, from known to unknown, and from
concrete to abstract without losing track of practical applications. Instructors could skip
the sections that appear towards the end of each chapter if they think the material is too
advanced for their students. However, we hope that all of the material can be covered, time
permitting. Often, “advanced” really means “unknown.” Most concepts are simple once we
understand them, and our understanding of “sophisticated” changes with time. What was a
sophisticated method a decade ago could be a standard one now.

0.1 Suggested use for classes

A typical two-semester sequence for students starting a sequence of quantitative meth-
ods would cover linear regression review, the potential outcomes framework, estimation
methods, interpretation and commonly used causal inference methods. Since each chapter
is organized from basic to more advance topics, some sections at the end of the chap-
ter could be skipped or only the first part of chapter could be assigned. For example, we
frame propensity scores and matching estimators as an alternative to regression adjustment,
which can be useful when overlap problems are present (and for uncovering them). Thus,
only the first part of Chapter 9 on propensity scores could be assigned.

Our two-semester classes usually cover the following chapters:

First semester: Chapters 2-6
Second semester: Chapters 9-12

In some programs, students take a year of mathematical statistics and/or econometric
theory before taking applied methods classes. In this case, a two-semester sequence would
skip some of the background material on estimation but cover chapters in more detail:

First semester: Chapters 3,6
Second semester: Chapters 10-12
Optional: Chapters 7,8,9

Alternatively, the book could be used for a one-semester class on causal methods for the
analysis of observational data assuming the statistical/econometrics background material
is known (students could review on their own Chapter 3 or other background):

Chapters 9-12
Optional (but suggested): Chapter 6




